Experiments Uncover Potential for Vast ‘Oceans’ of Life-Critical Element in Earth’s Core

New experiments show Earth’s core may hold vast ‘oceans’ of an essential element for life

Earth’s core might harbor immense concealed stores of hydrogen, a possibility that could overturn long‑standing ideas about the planet’s water origins, with a hidden cache beneath the surface potentially surpassing the volume of all existing oceans.This finding may radically shift current views of Earth’s formation and the true source of its water.

Far below the crust and mantle, at depths unreachable by drilling technology, Earth’s core remains one of the least accessible regions of our planet. Yet new scientific findings suggest that this remote and extreme environment may hold an extraordinary secret: a vast store of hydrogen potentially equivalent to several times the volume contained in all of Earth’s oceans. Researchers recently proposed that the core could harbor the equivalent of at least nine global oceans’ worth of hydrogen, and possibly as many as 45. If confirmed, this would make the core the largest hydrogen reservoir on Earth and significantly reshape prevailing theories about the planet’s early development and the origin of its water.

Hydrogen, the lightest and most abundant element in the universe, stands as a fundamental component in the chemistry of life and the evolution of planets. On Earth’s surface, it is most commonly encountered combined with oxygen in water. Yet, recent assessments suggest that large reserves of hydrogen could be sequestered deep within the metallic core, representing about 0.36% to 0.7% of its total mass. While that share might seem small, the core’s extraordinary scale and density ensure that even a tiny proportion corresponds to a vast amount of hydrogen.

These findings hold far-reaching consequences for interpreting when and by what processes Earth obtained its water, and they touch on a long-running debate over whether most of the planet’s water was delivered after its formation by impacts from comets and water-rich asteroids or whether hydrogen had already been built into Earth’s initial materials. The new research favors this second scenario, indicating that hydrogen existed as the planet was taking shape and became incorporated into the core during its earliest developmental stages.

Reevaluating how Earth’s water first came into existence

More than 4.6 billion years ago, the solar system was a turbulent environment filled with dust, gas and rocky debris orbiting a young sun. Through countless collisions and gradual accumulation, these materials coalesced into larger bodies, eventually forming the terrestrial planets, including Earth. During this formative period, the planet differentiated into layers: a dense metallic core sank toward the center, while lighter materials formed the mantle and crust above.

For hydrogen to be present in the core today, it must have been available during this critical window of planetary growth. As molten metal separated from silicate material and descended inward, hydrogen would have needed to dissolve into the liquid iron alloy that became the core. This process could only occur if hydrogen was already incorporated into the planet’s building blocks or delivered early enough to participate in core formation.

If most of Earth’s hydrogen was present from the beginning, it suggests that water and volatile elements were not merely late additions delivered by cosmic impacts. Instead, they may have been fundamental components of the materials that assembled into the planet. Under this scenario, the core would have sequestered a large portion of the available hydrogen within the first million years of Earth’s history, long before the surface oceans stabilized.

This interpretation questions models that place heavy emphasis on comet-driven bombardment as the dominant origin of Earth’s water, suggesting instead that although impacts from icy bodies probably supplied some moisture and volatile materials, the updated estimates indicate that a significant portion of hydrogen was already incorporated into the planet’s deep interior during its earliest formation stages.

Exploring a frontier long beyond reach

Studying the makeup of Earth’s core poses immense difficulties, as it starts about 3,000 kilometers below the surface and reaches the planet’s center, a realm where sun‑like temperatures and pressures millions of times greater than those at the surface prevail. Because direct sampling remains beyond today’s technological capabilities, scientists must depend on indirect investigative techniques and controlled laboratory experiments.

Hydrogen poses a particularly difficult measurement problem. Because it is the smallest and lightest element, it can easily escape from materials during experiments. Its tiny atomic size also makes it challenging to detect with conventional analytical tools. For decades, researchers attempted to infer the presence of hydrogen in the core by examining the density of iron under high pressures. The core’s density is slightly lower than that of pure iron and nickel, indicating that lighter elements must be present. Silicon and oxygen have long been considered leading candidates, but hydrogen has also been suspected.

Previous experimental strategies frequently depended on X-ray diffraction to examine how iron’s crystal lattice responds when hydrogen becomes embedded within it. As hydrogen diffuses into the atomic framework, the lattice expands in detectable ways. Yet the interpretation of these shifts has produced highly inconsistent estimates, spanning from minimal traces to exceptionally large quantities comparable to more than 100 ocean volumes. These discrepancies arose from methodological constraints and the inherent challenges of accurately reproducing genuine core conditions.

A new atomic-scale approach

Researchers refined these estimates by employing a technique that allows materials to be examined at the atomic scale; in controlled laboratory settings, they reproduced the immense pressures and temperatures thought to prevail in Earth’s deep interior, using a diamond anvil cell to squeeze iron samples to staggering pressures and then heating them with lasers until they liquefied, effectively simulating the molten metal of the planet’s early core.

After the samples cooled, scientists turned to atom probe tomography, a technique capable of producing near-atomic-resolution three-dimensional images and detailed chemical profiles. The materials were crafted into extremely fine, needle-shaped specimens measuring only a few dozen nanometers across. Through the use of precisely regulated voltage pulses, individual atoms were ionized and captured sequentially, allowing researchers to directly quantify hydrogen and map its distribution alongside elements like silicon and oxygen.

This approach differs fundamentally from earlier methods because it counts atoms directly rather than inferring hydrogen content from structural changes. The experiments revealed that hydrogen interacts closely with silicon and oxygen within iron under high-pressure conditions. Notably, the observed ratio between hydrogen and silicon in the experimental samples was approximately one to one.

By integrating this atomic-scale data with separate geophysical assessments of how much silicon is present in the core, the researchers derived a revised interval for hydrogen abundance, and their findings indicate that hydrogen comprises roughly 0.36% to 0.7% of the core’s mass, an amount that equates to several ocean volumes when described in more familiar terms.

Implications for the magnetic field and planetary habitability

The presence of hydrogen within the core not only reframes existing ideas about how water reached the planet but also affects scientific views on the development of Earth’s magnetic field, as the core’s outer layer of molten metal circulates while releasing internal heat, a motion that produces the geomagnetic field responsible for protecting the planet from damaging solar and cosmic radiation.

The interplay between hydrogen, silicon and oxygen in the core could affect how heat was transferred from the core to the mantle in the planet’s early history. The distribution of light elements influences density gradients, phase transitions and the dynamics of core convection. If hydrogen played a significant role in these processes, it may have contributed to establishing the long-lived magnetic field that made Earth more hospitable to life.

Understanding the distribution of volatile elements such as hydrogen also informs broader models of planetary formation. Hydrogen, along with carbon, nitrogen, oxygen, sulfur and phosphorus, belongs to a group of elements considered essential for life. Their behavior during planetary accretion determines whether a world develops surface water, an atmosphere and the chemical ingredients necessary for biology.

Weighing uncertainties and future directions

Despite the sophistication of the new experimental methods, uncertainties remain. Laboratory simulations can approximate but not perfectly replicate the conditions of Earth’s deep interior. Additionally, some hydrogen may escape from samples during decompression, potentially leading to underestimates. Other chemical interactions within the core, not fully captured in the experiments, could also alter hydrogen concentrations.

Some researchers note that independent studies have produced hydrogen estimates within a similar range, though occasionally higher. Differences in experimental design, assumptions about core composition and treatment of hydrogen loss can lead to variations in calculated values. As analytical techniques continue to advance, future experiments may refine these estimates further and narrow the uncertainty.

Geophysical observations may also provide indirect constraints. Seismic wave measurements, which reveal density and elastic properties of the core, can help test whether proposed hydrogen concentrations are consistent with observed data. Integrating laboratory results with seismic models will be crucial for building a comprehensive picture of the core’s composition.

An expanded view of Earth’s origins

If these projected hydrogen concentrations prove correct, they bolster the idea that Earth’s volatile reserves formed early and became widely dispersed within its interior, suggesting that hydrogen was not merely a late addition from icy impactors but may have existed within the planet’s original building materials, with gas from the solar nebula and inputs from asteroids and comets each contributing to different degrees.

Scientists now reconsider how water is distributed inside the planet, as the notion that the core holds most of Earth’s hydrogen reshapes this understanding. Although oceans visually and biologically dominate the surface, they might account for only a minor portion of Earth’s overall hydrogen reserves. The mantle is thought to store more, and the core may contain the greatest amount of all.

Earth’s profound interior is portrayed not as a fixed base lying under the crust but as a dynamic force shaping the planet’s chemical and thermal development, with the events set in motion during Earth’s earliest million years still molding its internal architecture, its magnetic field and its ability to sustain life.

As research advances, a clearer portrait emerges of a planet whose most defining traits were forged from its core outward. By examining the atomic architecture of iron under intense conditions, scientists are steadily uncovering how one of the smallest elements in the periodic table may have exerted a remarkably large influence on shaping Earth’s ultimate path.